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Energy Barriers for Flux Lines in Three Dimensions 
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1 determine the scaling behavior of the free energy barriers encountered by a 
flux line in moving through a three-dimensional random potential. A combina- 
tion of numerical simulations and analytic arguments suggests that these 
barriers scale with the length of the line in the same way as the fluctuation in 
the free energy. 
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Magnetic flux lines (FL) in high-T,, superconductors are one of the 
simplest examples of glassy systems. (1'21 In thermal equilibrium, a FL is 
pinned by defects (oxygen impurities, grain boundaries, etc.) in the super- 
conductor,  which lower its energy. ~31 This effect is limited by the line 
tension, which opposes the bending of the line. The resulting free energy 
landscape for the FL  is rather complicated and has many local minima, i.e., 
metastable states. (41 When an electric current flows through the system, the 
FL feels a Lorentz force perpendicular to its orientation and to the current 
direction. As long as the current is not strong enough to overcome the pin- 
ning forces, the line moves by thermally activated jumps of line segments 
between metastable configurations. 15-71 The length of these line segments is 
estimated by the condition that the free energy barrier for a jump should 
be of the same order as the gain in free energy due to that jump. These 
dynamics is believed to be the reason for the nonlinear voltage--current 
characteristics found in experiments. (31 

Since energ3~ barriers play such an important  role in the dynamics of 
FLs, it is essential to know their properties. The scale of  these barriers 
should grow with observation size L like a power law L r Usually, it is 
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assumed that the energy scale in the system is set by the fluctuations in free 
energy, which increase as L ~ and that therefore r =0.  (8.7) However, it is 
also quite possible that the heights of the ridges in the random energy 
landscape scale differently from those of the valleys that they separate, with 
~k > O. Yet another scenario is that transport occurs mainly along a per- 
colating channel of exceptionally low energy valleys with ~k < O. A first 
attempt to clarify this situation was taken in ref. 9, where ff =/9 was estab- 
lished for a FL moving in two dimensions. This demonstration relied on 
exact results for minimal energies in 1 + I dimensions, and on the fact that 
the endpoint of a FL in two dimensions has to move through all points 
which lie between its initial and final positions. It is of great importance to 
discuss also a FL in three dimensions, which is more physically relevant. In 
contrast to a two-dimensional system, a FL which moves in three dimen- 
sions can avoid regions in space which are energetically unfavorable for 
one of its segments, and one might therefore speculate that ~b < 0 in three 
dimensions. In this paper, we first determine numerically a lower bound for 
the barrier energy which scales in the same way as the energy fluctuations, 
thus ruling out ~ < 0. Further numerical results predict that an upper 
bound scales in the same way, ruling out ~k > 0, and thus leading to ~b = 0. 

We describe the FL as a directed path in a random medium. (~~ The 
path is discretized to lie on the bonds of a cubic lattice starting at the 
origin and directed along its (1, 1, 1) diagonal. Each segment of the line 
can proceed in the positive direction along one of the three axes, leading 
to a total of 3' configurations after t steps, with endpoints lying in the 
plane which is spanned by the points (t, 0, 0), (0, t, 0), and (0, 0, t). A given 
configuration of the FL is labeled by vectors {x(r)} for r = 0, 1 ..... t, giving 
the transverse coordinates of the FL at each step. The points {x(r)} lie on 
the vertices of a triangular lattice. For a given value of r, they lie on one 
of three alternating sublattices. 

To each bond on the cubic lattice is assigned a (quenched) random 
energy equally distributed between 0 and 1. The energy of each configura- 
tion is the sum of all random bond energies on the line. For  each endpoint 
(t, x), there is a configuration of minimal energy Emi,(xlt) which can be 
obtained numerically in a time of order 13 by a transfer matrix algo- 
rithm. I1~ The fluctuation in minimal energy is known to scale as t o with 

~ 0.24, and the transverse fluctuation of the coordinates of minimal paths 
is known to scale as t r with (~0 .62 .  (~lJ The endpoints of the minimal 
paths with the lowest energy lie within a distance oc t  r of the origin. Figure 
1 shows the minimal energies of paths of length t = 288 to endpoints x with 
Ixl < O(tr The highest energy in this region is represented in white, the 
smallest energy in black. The minimal energies are correlated over a dis- 
tance of the order of t r The distribution of minimal energies is close to a 
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Fig. 1. Minimal energies of paths of length t = 288 to endpoints x with txl < O(tr White: 
High energies; black: low energies. 

Fig. 2. 
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Probability distribution ,P(gmin) of minimal energies .Emin(0 [ 144), averaged over 
50,000 realizations of randomness. The solid line is a Gaussian distribution. 
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Gaussian and is shown in Fig. 2. Similar to a two-dimensional system, t~2) 
this distribution seems to have a third cumulant since it is not completely 
symmetric. 

We next examine the energy barrier that has to be overcome when the 
line is moved from an initial minimal energy configuration between (0, 0) 
and (t, x;) to a final one between (0, 0) and (t, xf), with [xf,,.[ ~ t  ~. The only 
elementary move allowed is flipping a kink along the line. Thus the point 
(r, x) can be shifted to (r, x _+ e,.), where ___e,. are the six vectors which con- 
nect a vertex in the triangular lattice to its nearest neighbors within the 
same sublattice. Each route from the initial to the final configuration is 
obtained by a sequence of such elementary moves. For each sequence, there 
is an intermediate configuration of maximum energy and a barrier which 
is the difference between this maximum and the initial energy. In a system 
at temperature T, the probability that the FL chooses a sequence which 
crosses a barrier of height E s is proportional to exp(- -Es /T) ,  multiplied by 
the number of such sequences. We assume that, as in the case for the equi- 
librium FL, the "entropic" factor of the number of paths does not modify 
scaling behavior. Thus at sufficiently low temperatures the FL chooses the 
optimal sequence which has to overcome the least energy, and the overall 
barrier is the minimum of barrier energies of all sequences. 

Since the number of elementary moves scales roughly as the volume of 
a cone which contains the initial and final lines, the number of possible 
sequences grows as t"2t. This exponential growth makes it practically 
impossible to find the barrier by examining all possible sequences, hamper- 
ing a systematic examination of barrier energies. Rather than finding the 
true barrier energy, we proceed by placing lower and upper bounds on it. 

A lower bound to the barrier energy is obtained in the following way: 
While the line moves from its initial to its final configuration, the trans- 
verse coordinates of its endpoint move between nearest neighbor positions 
on one of the above-mentioned triangular sublattices. When the endpoint 
is at a position (x), the energy of the line is at least as large as the minimal 
energy Emi,(xlt). The maximum of all these minimal energies along the 
trajectory of the endpoint, minus the energy of the initial configuration, 
certainly bounds the barrier energy from below. Since we do not know the 
actual trajectory of the endpoint, we have to look for the trajectory with 
the smallest maximal energy. Only in this case can we be sure that we have 
indeed found a lower bound. This situation is fundamentally different from 
a two-dimensional system, where there is only one possible trajectory for 
the endpoint. 

Provided that the minimal energies Emi,(xlt) are known, this lower 
bound is determined in polynomial time by using a transfer-matrix method: 
We start by assigning to the initial point xi a lower bound energy 0, and 
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Fig. 3. Scaling functions f_(y), f-(Y), and fo(Y) defined in Eqs.(1)-(3) for t=72 (solid 
line), t= 144 (dotted), t=288 (dashed), t=576 (long-dashed), and t= 1152 (dot-dashed), 
averaged over 500 realizations of randomness. The straight line has the slope 0/~ = 0.39. 

to all other sites x on the same sublattice an energy t which is certainly 
larger than the lower bound resulting from the algorithm after many itera- 
tions. At each step the energy of all sites x except the initial site is updated 
according to the following rule: Look for the minimum of the energies of 
the six neighbors x _ e,.. If  this is smaller than the energy at x, replace the 
energy at x by this minimum or by Emin(X[t ) -Emin(X [ t), whichever is 
larger. After a sufficiently large number of iterations, which is of the order 
of the size of the area of interest (which scales at t2c), all possible trajec- 
tories to endpoints within this area have been probed, and the energies no 
longer change. The energy at site xf  is then identified as the lower bound. 
Figure 3 shows the lower bound to the energy barrier for a line with the 
endpoint moving from the origin to sites within a distance of the order of 
t ~ for different values of t and averaged over 500 realizations of random- 
ness. The distance [xf-x,.[  has been scaled by t -c, and the energy by t -~ 
With this scaling, all the curves should collapse, leading to the following 
scaling behavior for the lower bound: 

( E_(t, Ixl- x,I)> = t~ _(IXr- X,l/t ~) (1) 

The function f_ (y)  is proportional to yO/r for small y. For  the simulated 
system sizes, however, this asymptotic scaling cannot yet be clearly seen. 
For y > 1, the scaling form in Eq. (1) breaks down since the minimal 
energy is then a function of the angle ([x[/t). We conclude that the lower 
bound to the barrier scales in the same way as the fluctuations in minimal 
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energy, and consequently the energy barrier increases at least as t o , leading 
to r 0. The distribution P ( E _ )  of the lower-bound energy for a given 
distance Ixloct r is shown in Fig. 4. It appears to be half-Gaussian with 
width oc t r 

The result ~,/> 0 is not surprising if one realizes that an even simpler 
lower bound is given by max(Emi,(Xf I t) -- Emi,(x~ I t), 0), which evidently 
scales as t o since the distribution function of minimal energies decays 
exponetially fast, i.e., has no power-law tails (see Fig. 2). To make sure that 
the scaling of the lower bound found above is not dominated by the 
neighborhood of final configurations with particularly high energies, 
I repeated the above simulations by allowing only endpoints with minimal 
energies smaller than the initial energy. This corresponds to the situation 
that the endpoint of the line does not move to an arbitrary position, but 
to a position which is energetically favorable. The result is shown in Fig. 
3 and has the scaling form 

< ~ ( t ,  I x f - x , l ) ) = t ~  (2) 

As in the previous case, the asymptotic scaling f _ ( y ) o c y  ~ for small y 
cannot yet be clearly seen. The energy distribution of the lower bound is 
again a half-Gaussian of width oz t C and looks similar to Fig. 4. 

The same scaling behavior is also found when instead of the optimal 
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trajectory for the endpoint the shortest trajectory (a straight line) is chosen. 
In this case, the mean of the barrier energy Eo has the scaling form 

(/~o(t, I x f -  x i l ) )  = t ~  r (3) 

(see Fig. 3), again with a half-Gaussian distribution of width oct  r This, of 
course, does not represent a lower bound to the true barrier, but it will be 
important for the determination of an upper bound below, and is therefore 
included here. 

The result ~P_ oct  o [Eq. (2)] can be explained from the exponential 
tails of the distribution of minimal energies: If we asume that the endpoint 
of the line moves only in valleys of particularly low energy, we can suc- 
cessively remove all sites with the largest minimal energy from the set of 
possible endpoints, until the connectivity over the distance t r breaks down. 
The remaining endpoints form percolation clusters, and their density is 
given by the corresponding percolation threshold (This is analogous to 
random resistor networks describing the hopping resistivity for strongly 
localized electrons. The resistance of the whole sample is governed by the 
critical resistor that makes the network percolate, t~31) Since the occupied 
sites are correlated over the distances considered, the value for the 
threshold is different from the site percolation threshold of 0.5 in an infinite 
triangular lattice with no correlation between occupied sites. But for the 
present purpose, it is sufficient to know that this threshold is finite and that 
therefore a finite percentage of all sites are below threshold. Since the dis- 
tribution of minimal energies dacays rapidly, its tail cannot contain a finite 
percentage of all sites. We conclude that the threshold is within a distance 
of t o from the peak, and therefore that the energy fluctuation on the per- 
colation cluster and consequently the lower bound for the barrier are oc t ~ 

We now proceed to construct an upper bound to the energy barrier. 
To this purpose, we specify a sequence of elementary moves which take the 
line from its initial to its final configuration. Since we cannot be sure that 
this sequence is the optimal one, we know only that the barrier associated 
with this specific sequence is an upper bound to the true barrier. The algo- 
rithm for the motion of the line is inspired by the one presented in ref. 9 
and is as follows: First, one choses a sequence of endpoints connecting the 
initial to the final endpoint which is as short as possible. Then, one draws 
all the minimal paths leading to these endpoints. It is certainly advan- 
tageous to keep'the intermediate paths as close to minimal configurations 
as possible and therefore to require that the line passes successively 
through all these intermediate minimal configurations. Usually, minimal 
configurations { x l(r) } and { x2(~) } with neighboring endpoints have large 
parts in common and separate only during the last few steps. They enclose 
a small loop with a size of the order of 1. But sometimes both paths 
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already separate during the first few steps and form a large loop of the 
lateral size of the order of t r We have to give a prescription for how the 
line moves over a loop. If the two minimal paths have nowhere a distance 
larger than 1 (measured in units of leil), we can choose a sequence of 
elementary moves such that at most two bonds of the line are not on one 
or the other minimal path, leading to a barrier of order 1 between the 
two. If the distance is larger than 1, we proceed as follows: Let Zo be 
the last point which both lines have in common, i.e., x~(ro)=X2(ro) 
and x ] ( r 0 + l ) : / : x 2 ( r o + l ) .  We then consider the midway points 
(to + ( t - t o ) / 2 ,  x) which connect both lines in the middle of the loop via 
the shortest possible trajectory (if there are several possibilities, we choose 
one at random). For each of these points, we find two minimal segments 
of length ( t - t o ) / 2  connecting on one side to (r0, x~(ro)) and on the other 
to either (t, xl(t)) or (t, x2(t)). There are usually several possibilities in 
making these connections, but all of them lead to the same result. The two 
segments form an almost minimal path of length t -  to, constrained to go 
through the point (30+ ( t -Zo)/2,  x). We next move the line {x~(r)} with 
3o ~< ~ ~< t stepwise through this sequence of almost minimal paths. At each 
step we first attempt to move the upper segment and then the lower one. 
The prescription for moving these segments of length ( t - t o ) / 2  is exactly 
the same as for paths of length t: If the distance between two consecutive 
configurations is larger than 1 for some r, we consider the points in the 
middle of the loop formed by the two, and construct minimal paths of half 
the loop length connecting them to the initial and final loop points. Next 
we attempt to move segments of the length of the loop by repeatedly mov- 
ing the upper and lower line portions. In some cases, it is necessary to 
proceed with this construction until the cutoff scale (1) is reached. Thus, at 
each intermediate configuration the line is composed of segments of mini- 
mal paths of different length, the smallest segments having length 1 in the 
worst case. 

We now estimate the barrier energy resulting from the above construc- 
tion. In principle, this can be done by programming the algorithm and 
determining the result numerically. Such a program would be more com- 
plicated than in two dimensions, and it would not be able to simulate large 
systems, since a big portion of the bond energies on the three-dimensional 
lattice need to be stored. It is therefore uncertain if the asymptotic scaling 
behavior of the upper bound may be found this way. Instead, we resort to 
analytic considerations: Since the line is always composed of segments of 
minimal paths, whose scaling properties are known, we have enough infor- 
mation to give an upper bound to the barrier energy. For small distances 
Ixr-x;I,  the initial and final path usually differ only in the last few steps, 
and therefore the upper bound to the barrier energy (and also the barrier 
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energy itself) does not depend on t, but only on [x f -x i [ .  We are interested 
in the barrier which has to be overcome when the line moves over a dis- 
tance of the order of t ~. Let us add successively the contributions to the 
upper bound which result from the different steps in the algorithm: The 
first step consists in finding a sequence of minimal paths with endpoints 
lying on the shortest trajectory from xi(t) to Xs(t). The energy difference 
between the minimal path with highest energy and the initial minimal path 
is Eo(t ,  t ~) ~ t ~ which is the first contribution to the upper bound. When 
moving from one minimal path to the next, the line has to overcome a loop 
which in the worst case has the length t and which might (again in the 
worst case) occur in combination with the minimal path with highest 
energy. We therefore have to add to the upper bound the contribution of 
a loop of length t and width oct  r This is obtained as follows: Within the 
loop, the line moves through a sequence of paths which are composed of 
two pieces of minimal path of half the loop length. Both the upper and the 
lower sequence cover an energy range Eo(t/2, ( t /2)  ~) ~ ( 1/2)~ Eo (t, t c'). In 
the worst case, both sequences have their maximum simultaneously, giving 
a contribution ( 1 / 2 ) ~  t r to the upper bound. All further contribu- 
tions can immediately be written down because of the recursive definition 
of the algorithm: While the upper and lower segments move through mini- 
mal configurations within the loop, they in turn have to overcome loops 
which in the worst case have the size t/4, and so on. The sum of all these 
contributions, averaged over different realizations of randomness, is 

(Ec(t,  t~)) = ( E o ( t ,  t r  + 2(Eo(t, t r 176176  ... ] 

= ( E o ( t ,  tr [2/(1 --(1/2) ~ - 1] ~- 12.0(Eo(t, t~)) (4) 

In principle, one has to add a constant which accounts for the breakdown 
of the scaling form of the energy increase for small loops. But this constant 
is of the order of one and can be neglected with respect to the terms which 
increase with t o . 

There are several configurations of the path which are expected to 
have the energy Ec. They pass through loops of all sizes and are composed 
of one minimal segment of length t/2, one of length t/4, etc., ending with 
two smallest pieces of length 1. Each of these is  a candidate to be the 
barrier path in our algorithm. To obtain the mean value for the maximum 
of their energies we need to know their number and their distribution, 
especially in the large-energy tail. The exact number of candidate barriers 
is not known, but we can be sure that it increases no faster than t ~ +r which 
is the order of the total number of intermediate configurations of the path. 
The energy distribution for the candidate barriers results from the energy 
distribution of their segments: Each of the segments of length ri has an 
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approximately (half-)Gaussian energy distribution with a width of the 
order of r ~ Since the different segments are constructed through a specific 
recursive procedure, they might not be independent. If we want to be sure 
to establish an upper bound, we have to assume the worst case that they 
are completely dependent, resulting in a variance 

var(Ec(t, to))~_ log2( t )[ var( Eo( t, tr ) ) + 2 var( Eo( t/2, ( t, 2)~))+ - - - ]  

-~ 8.7 In(t) var(Eo(t, tr oc In(t) t 2~ (5) 

It can be checked easily that (for large N), the maximum of N inde- 
pendent Gaussian variables of mean a and variance ~r z, is a Gaussian of 
mean a + a(2 In N)  ~/z and variance a2/(2 In N). Since the candidate barriers 
have large segments in common, their energies are not independent. 
Assuming their independence, we overestimate again the barrier energy, 
but of course we still establish an upper bound to it. Putting all contribu- 
tions together and taking into account the behavior for small I x f - x i l ,  we 
finally obtain the following estimate for the upper bound in barrier energy: 

( E + ( l x f - - X i ]  , t ) )  = (Ec ( lx f -x~ l ,  t ) )  + [2 In N v a r E c ( l x r - x ~ ] ,  t)] I/z 

(In t) t~ (IXr- x; lit r (6) 

To conclude, I have shown that the energy barrier encountered by a 
FL moving in a 3D random medium has an upper and a lower bound 
which both increase with t o , except for logarithmic corrections. From this 
follows that the barrier itself increases with t o , confirming the hypothesis 
qs = 0. Since the argument presented in this paper is mainly based on the 
exponential tails of the minimal energy distribution, it can be expected that 
the result ~s = 0 holds also in higher dimensions, provided that the distribu- 
tion of minimal energies still has exponential tails. 

A C K N O W L E D G M E N T S  

I thank Mehran Kardar for very helpful discussions and comments on 
the manuscript. This work was supported by the Deutsche Forschungs- 
gemeinschaft (DFG)  under contract Dr 300/1-1 and by NSF grant DMR- 
93-03667. 

R E F E R E N C E S  

1. K. H. Fischer and J. A. Hertz, Sph7 G~sses (Cambridge University Press, Cambridge, 
1991). 

2. J. A. Mydosh, Sphz G~sses: An Experimental bztroduct~n (Tayler & Francis, London, 
1993). 



Energy Barriers for Flux Lines in Three Dimensions 441 

3. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. 1. Larkin, and V. M. Vinokur, Rev. 
Mod. Phys. 66:1125 (1994). 

4. D. R. Nelson and V. M. Vinokur, Phys. Rev. B 48:13060 (1993). 
5. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36:39 (1964). 
6. D. S. Fisher, M. P. A. Fischer, and D. A. Huse, Phys. Rev. B 43:130 (1991). 
7. L. Ioffe and V. M. Vinokur, J. Phys. C 20:6149 (1987). 
8. D. A. Huse and C. L. Henley, Phys. Rev. Lett. 54:2708 (1985). 
9. L. V. Mikheev, B. Drossel, and M. Kardar, Phys. Rev. Lett. 75:1170 (1995). 

10. M. Kardar, Lectures on Directed Paths hi Random Media (Les Houches Summer School 
on Fluctuating Geometries in Statistical Mechanics and Field Theory, August 1994, to be 
published); preprint cond-mat/9411022. 

11. J. G. Amar and F. Family, Phys. Rev. A 41:3399 (1990). 
12. T. Halpin-Healy, Phys. Rev. A 44:R3415 (1991). 
13. V. Ambegaokar, B. I. Halperin, and J. S. Langer, Phys. Rev. B 4:2612 (1971). 

Communicated by M. Kardar 


